If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3X^2-26X+46=0
a = 3; b = -26; c = +46;
Δ = b2-4ac
Δ = -262-4·3·46
Δ = 124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{124}=\sqrt{4*31}=\sqrt{4}*\sqrt{31}=2\sqrt{31}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-2\sqrt{31}}{2*3}=\frac{26-2\sqrt{31}}{6} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+2\sqrt{31}}{2*3}=\frac{26+2\sqrt{31}}{6} $
| 3X^2+26x+46=0 | | 6p=15p+81 | | 8p=15p+81 | | 8(x-1)-8=4x+4(-4+x) | | X-5x+12=0 | | 22y+33=26y-11 | | 10x-10=5(x-10) | | 4(3n-1)+6=3(4n+3) | | 10x-10=5(x10) | | V=2197m | | 3x-5/x+1=x+1 | | 11x+18=90 | | -20+13x=13x-20 | | 4x+29=5(x+4) | | 1/x=9/90 | | 4x(x-6)=5 | | 6(k+9)-1k=8 | | -20x+13x=13x-20 | | 1x=9/90 | | 4x(x-2)=3 | | 2z+5=8 | | 11+15=-2r² | | 0.2+0.38w=0.4318 | | 10/4y=5 | | 0.18-0.75a=0.405 | | 3x+5=3000 | | -2-a=3 | | (2x+1)^2-3x^2=5x+4 | | 3/4y-2=7/8y+3 | | 110/2=x | | (2x-3)(x+4)-8x=10 | | (7x)°+(x-4)°=180 |